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ABSTRACT: Metal nanoclusters (NCs) are nanomaterials of size
of less than 2 nm that exhibit a set of unique physical, chemical,
optical, and electronic properties. Because of recent interest in
NCs, a great deal of effort is being made to develop synthetic
routes that allow control over the NC size, shape, geometry, and
properties. Direct laser writing is one of the few synthesis methods
that allow the generation of photostable NCs with high quantum
yield in a highly controlled fashion. A key advantage of laser-
written NCs is the ability to create easy-to-use solid-state devices
for a range of applications. This review will present necessary
background and recent advances in laser writing of silver NCs and
their applications in different solid-state matrixes such as glass, zeolites, and polymer substrate. This topic will be of interest to
researchers in the fields of materials science, optics and photonics, chemistry, and biomedical sciences.
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1. INTRODUCTION

Nanotechnology plays an important role in modern society in
enabling technologies for applications in information and
communication, imaging, sensing, healthcare and energy,
among others.1 In recent years, “metallic nanoclusters
(NCs)” and their applications have emerged as an active
area in nanotechnology research.2 Metallic NCs represent a
new class of luminescent nanomaterials with metal cores that
consist of a few to tens of atoms. They are ultrasmall materials
with size of less than 2 nm, and they exhibit a quantized energy
level that gives rise to significantly different optical, electrical,
and chemical properties compared to their larger nanoparticle
(NP) counterparts. They seem to act as a missing link between
individual metal atoms and larger NPs.3−8

NC history dates back to prehistoric times. For instance, the
C60 carbon NCs are suggested to have formed during the
creation of the universe.7,9 Scientific studies on the NCs can be
traced back to the 1950s and 1960s, where they were formed
from intense molecular beams at low temperature by
supersonic expansion.7 Later, laser-assisted techniques made
it possible to create NCs of a vast majority of elements in the
periodic table.10 Ever since, there have been significant
amounts of work done on NCs of noble metals, semiconductor
elements, and compound NCs.5,7

In recent years, NCs are most commonly synthesized and
studied in solvated form.2,8 Effort has been made to develop
easy synthetic strategies to precisely control the number of
atoms and size of the NCs. Already, several methods have been

developed to synthesize stable NCs in a scalable manner.3,10−24

Furthermore, researchers have used surface chemistry to
generate NCs with tunable properties such as photo-
luminescence, surface-enhanced Raman scattering (SERS),
and electrochemiluminescence.3,14,17,26,27 They have been
functionalized with organic, inorganic, biological, and poly-
meric molecules such as thiols, amino acids, dendrimers, DNA,
and zeolites, which serve as scaffolds to stabilize NCs and
prevent them from forming larger NPs.3,11,17−19,24,25,28−31

Among the properties of NCs, photoluminescence has gained
utmost attention because the fluorescence obtained from NCs,
in most cases, is photostable and bright with a large Stokes
shift and exhibits tunable emission.4,8,32−34 The nontoxic
properties and ultrasmall size of NCs have made them better
candidates for biological imaging applications compared to
organic dyes and quantum dots.3,8

Because there are many reviews on the theoretical and
experimental aspects of NCs, we will focus on the synthesis
and fabrication of user-defined NC structures using direct laser
writing (DLW) in this review article.2,4−6,8,3536 DLW has been
used as a promising method to synthesize NCs in solid

Received: May 15, 2020
Accepted: July 13, 2020
Published: July 13, 2020

Reviewwww.acsanm.org

© 2020 American Chemical Society
7325

https://dx.doi.org/10.1021/acsanm.0c01339
ACS Appl. Nano Mater. 2020, 3, 7325−7342

D
ow

nl
oa

de
d 

vi
a 

SY
R

A
C

U
SE

 U
N

IV
 o

n 
A

pr
il 

24
, 2

02
1 

at
 1

7:
52

:3
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Puskal+Kunwar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pranav+Soman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsanm.0c01339&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aanmf6/3/8?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/8?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/8?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/8?ref=pdf
www.acsanm.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.0c01339?ref=pdf
https://www.acsanm.org?ref=pdf
https://www.acsanm.org?ref=pdf


substrates that has led to a variety of NC-based functional
devices for data storage, labeling, and light-emitting-diode
(LED) applications.32,33,37−43 Using the case study of silver
nanoclusters (AgNCs), this review will first introduce the
DLW method, followed by recent advances in methods and
applications of laser-written NC structures in different solid-
state matrixes.

2. DLW
Advances in manufacturing techniques have enabled the
fabrication of simple to complex structures using different
materials at different size scales.44−47 DLW has emerged as a
new manufacturing technology over the past 2 decades that has
generated interest in both academic research and industrial
applications.48−50 DLW has been widely used to fabricate user-
defined multiscale structures at a resolution of a few hundred
nanometers in the fields of optics and photonics, microfluidics,
biomedical engineering, microrobotics, and electronics using a
broad range of materials.44−46,48−54 In this technique, a laser
beam is used to print two-dimensional (2D)/three-dimen-

sional (3D) structures by using different mechanisms such as
photopolymerization, photoablation, and laser-induced for-
ward transfer. However, to achieve the submicrometer
resolution, a laser beam is focused with an objective lens.
The focused laser beam combined with the scanning system
can print a microstructure using single-photon- or multi-
photon-absorption-induced DLW as explained below (Figure
1A−C)55−57
Single-photon-absorption-induced DLW is a simple way to

fabricate one-dimensional (1D)/2D structures that utilize a
low-cost continuous-wave (CW) laser operating at a wave-
length located within the absorption band of the photo-
sensitive material. In this process, single-photon polymer-
ization occurs within the entire area of the photopolymer that
is exposed to light, and therefore this method is limited to
planar fabrication (Figure 1B,C).55,58 Multiphoton-absorption-
induced DLW is a 3D fabrication technique based on
nonlinear absorption of light, predominantly reported for
two-photon absorption (TPA). The probability of TPA is
several orders of magnitude weaker than linear absorption,

Figure 1. (A) Optical setup of DLW consisting of a laser source, beam guiding and focusing optics, sample holder and scanning stage, and a
microscopy arm for observing the writing process. (B) Diagram depicting the energy transitions in single-photon absorption and TPA. (C)
Schematic showing the single-photon-absorption- and TPA-induced DLW of a photopolymer. Single-photon polymerization (left) occurs in the
entire area of the photopolymer exposed to UV/visible light, and two-photon polymerization (right) results only in the focal point of the laser beam
because of the simultaneous absorption of two photons of near-IR light.

Figure 2. Schematic showing the formation of quantized electronic energy levels on the way from bulk metal to an atom.
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which demands a very high light intensity and is delivered by
an ultrafast, typically femtosecond, laser. In TPA, the laser−
matter interactions occur only at the laser focal spot (Figure
1B,C)59,60 which allows the use of longer-wavelength laser
beams that can penetrate deep inside the photopolymer,
making this method uniquely suited to fabricate 3D
structures.61 DLW has been utilized to print structures using
a variety of photosensitive materials such as polymers,51

biodegradable polymers,62−64 hybrid ceramic materials,65,66

hydrogel,47,53,67−71 proteins,67,68 and graphene.72−74 Apart
from these materials, DLW can also print 2D and 3D metallic
microstructures using a polymeric solution containing metal
ions.72,75 In this process, light is used to photoreduce metal
ions to metal NPs, which polymerize to form 3D metallic
structures.76−78 On this note, Kawata et al. demonstrated
femtosecond laser metal printing in an aqueous solution.79

Using the technique, Zhao and co-workers performed DLW of
a silver aqueous solution to print transparent and highly
conductive silver grid electrodes.80,81 In another study,
Wegener et al. reported conducting gold microstructures by
simultaneously polymerizing the polymer and also reducing
gold ions from the gold salt.82 Further, Stellacci et al. and
others have used DLW to fabricate silver metal micro/
nanostructures.83,84 Recently, DLW-mediated metal NC
structures have also been fabricated in substrates made out
of specialized glass, zeolites, and polymers.32−34,37−39,42,43,85−94

3. NCs
On the basis of the size and corresponding properties, metal
can be divided into bulk metal, metal NPs, and metal NCs
(Figure 2).7,8,95,96 Bulk metals consist of a sea of free
delocalized electrons, which give them metal-like properties
such as high electrical and thermal conductivity, mechanical
ductility, and surface luster, whereas NPs are characterized by
the collective oscillation of electrons, i.e., surface plasmons.8,97

Further, a decrease in the size of the metal particles to the
Fermi wavelength of the electron gives rise to metal NCs; a
multiatom particle with significantly different optical, electrical,
and chemical properties compared to their larger counterparts.
These entities are molecule-like species with discrete energy
levels, giving rise to properties such as absorption and
fluorescence.5−8,96

Metal NCs represent a new class of luminescent nanoma-
terials with metal cores consisting of a few to tens of
atoms.8,14,95,98,99 These NCs acts as a bridge between atoms
and NPs; however, they can readily coalesce to form NPs if
they are not stabilized using special gas, liquid, polymers, and
biomolecules.3,5,8,17,96,100 They possess molecule-like proper-
ties such as discrete electronic states resulting in unique and
tunable optical, chemical, and electronic properties such as
high quantum yield fluorescence, electrochemoluminescence
(ECL), SERS, and photostability. There are many reviews on
metal NCs,2,4−6,8,36 and a brief overview of AgNCs formed in
solution is provided below; however, this review focuses on
DLW-mediated AgNCs and their properties and applications.
Synthesis or Formation of AgNCs. Similar to other

metallic NCs, AgNCs are subnanometer in size with a few to
tens of silver atoms, and they exhibit unique properties such as
strong fluorescence and photostability5,8,14,24,101 Broadly
speaking, AgNCs can be synthesized using bottom-up and
top-down approaches.6 The bottom-up approach refers to
atom-by-atom construction that results in ultrasmall nanoma-
terials with fewer defects and with homogeneous chemical

compositions. In bottom-up approaches, silver ions are
reduced to zerovalent silver atoms using different reduction
methods such as chemical reduction, photoreduction, electro-
chemical reduction, microwave reductions and sonochemical
reduction.3,12−14,16−21,24−26,28,30,31,102−105 One of the common
methods of synthesizing AgNCs is the chemical reduction
method. In this method, chemical reducing agents such as
sodium borohydride (NaBH4) and sodium hypophosphite
(NaPO2H2·H2O) are used to reduce silver ions to AgNCs in
the presence of stabilization agents.3,18,19,26,28,30,31,102,103

Similarly, UV and visible light have been used to reduce the
silver ions to produce NCs using the photoreduction process,
which has several advantages such as controlled reduction
without introducing impurities.12−14,16,17,25,106 The method of
AgNC formation by microwave-assisted reduction is simpler,
faster, and highly reproducible,104,105 whereas the electro-
chemical reduction method has the advantage of producing
NCs with well-defined size.20,21 On a similar note,
sonochemical reduction is an energy efficient method and
has been proven to be a useful method to produce NCs using
ultrasonic irradiation.24 AgNCs can also be formed by a top-
down approach where silver nanoparticles (AgNPs) are etched
using chemical, high temperature, etc., using techniques such
as interface etching and direct core reduction of large AgNPs.6

DLW, a new technique for synthesizing and patterning NCs, is
also a bottom-up approach of NC formation; however, this
approach of fabrication can form NCs with precise spatial
control in the range of a few hundred nanometers and, hence,
can be coined as a directed bottom-up approach.33,34,38,85,107

AgNCs Possessing Unique Optical Properties. AgNCs
exhibit characteristic absorption and fluorescence features that
depend on the size of the particles and encapsulating scaffolds.
Because they are too small to support plasmonic behavior, the
absorption spectrum is devoid of a surface plasmon peak,
otherwise seen at around 400 nm in the Ag NP’s absorption
spectrum. However, they exhibit discrete energy transitions;
hence, they possess characteristic broadband absorption
features due to multidisperse particles.3,8,108 AgNCs typically
possess fluorescence with a quantum yield of several orders of
magnitude higher than those of bulk metals. The enhanced
optical properties are associated with the energy gap between
the highest occupied and lowest unoccupied molecular orbitals
that can be tuned by varying with the size and composition of
NCs.5,8,96 The gap can also be affected by different factors like
the encapsulating environment, ligands or surfactant, or
concentration of chemicals. However, at present, working
with AgNCs remains challenging because of its highly oxidative
nature.5,8,96

SERS, Solvatochromic, and ECL. AgNCs are reported to
enhance the Raman signal by interacting with the analytes
using a charge-transfer mechanism by the process known as
SERS.26,109,110 For instance, an atomically precise thiolated
AgNC (Ag152) is reported to enhance the Raman signal of
surrounding analytes.95 Similarly, Dickson et al. have shown
that the few-atom AgNCs produce scaffold-specific single-
molecule Stokes and anti-Stokes Raman scattering.110 Next,
AgNCs show a sovatochromic effect, which is changes in the
optical and fluorescence properties due to changes in the
surrounding matrixes such as changes in the solvent polarity or
pH value.17,25 It is shown in one study by Ras et al. that when
the solvent is changed from water to methanol, the absorption
and emission maxima obtained from AgNCs formed in
poly(methacrylic acid) (PMAA) shifted significantly toward
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Figure 3. (A) Illustration of single- and four-photon absorption of a Gaussian beam focused with an objective lens of numerical aperture 0.5.
Because of four-photon absorption, the laser energy is absorbed within the focal volume inside the glass containing silver and results in the
formation of AgNCs@glass precisely in 3D space. Reproduced from ref 40. Copyright 2009 Optical Society of America. (B) Fluorescence images
(excitation wavelength = 405 nm) of the laser-written ring-shaped structures at three different irradiances. Reproduced from ref 38. Copyright 2010
American Chemical Society. (C) Fluorescence confocal microscopy image of a photoinduced ring structure when excited with a 405 nm laser
(fabrication parameters: wavelength = 1030 nm, repetition rate = 1 MHz, NA = 0.52, and deposited energy = 166 nJ). Reproduced from ref 93.
Copyright 2010 Elsevier. (D) Corresponding high-resolution scanning electron microscopy (HRSEM) image. Reproduced from ref 38. Copyright
2010 American Chemical Society. (E) Fluorescence and HRSEM images (inset) of a AgNC containing a 2D pattern. Reproduced from ref 85.
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the red.17 A solvatochromic effect was also seen in AgNCs
stabilized in DNA oligonucleotides.111 In addition to photo-
luminescence, AgNCs also exhibit ECL. ECL is an emission of
light stimulated by electricity in an appropriate chemical
environment.17,32 This is reported in AgNCs by Ras and co-
workers, and they have demonstrated cathodic hot electron-
induced ECL properties of AgNCs.17

Broad Range of Applications. Because of the unique
properties of AgNCs, they have already been utilized in several
applications such as imaging, sensing, data storage, and
labeling.4,6,8,100,112 They are very small materials and mostly
biocompatible and exhibit bright fluorescence; therefore, NCs
have been used for fluorescence imaging of cancer cells,113,114

amyloid fibers,13 living cells, and even the nuclei of cells.115

They have also been used to detect some of the metal ions
such as copper, chromium, and mercury.116−118 Detection is
mainly based on the fluorescence quenching of AgNCs and
they are used to detect these metal ions with a concentration in
the nanomolar range.119 Further, AgNCs are also able to detect
biomolecules, proteins, DNA, and RNA.120−125 They are also
used for data storage in silver oxide thin films, glass, and
zeolites and have been utilized for the fabrication of
microlabels in zeolites and polymers.38,42,85 Some AgNCs
exhibit nonlinear-optical properties such as second or third
harmonic generation and have been utilized to write and read
data.34,126

To provide readers with an overview of the AgNCs, we
summarize the various synthesis strategies, nuclearity (number
of central metal atoms in a coordination compound), optical
properties, and potential applications of AgNCs fabricated
using different techniques including DLW in Table 1 of this
review.
Commonly used solution-based synthesis methods are good

at producing AgNCs in large amounts; however, they cannot
provide control over NC formation at the specific spatial
locations; this is necessary for the fabrication of solid-state
monolithic functional devices such as SERS substrates and
thin-film nanosensors. Laser-written AgNCs, synthesized
through photoreduction on a solid-state substrate, have several
advantages over the solution-based AgNCs. One of the
advantages is precise spatial control of NC formation at a
resolution of sub-500 nm. Solution-dispersed fluorescent
AgNCs are, in general, photostable; however, they cannot
match the photostability of laser-written AgNCs in a solid-state
substrate (especially in a glass substrate). Further, the precise
use of a laser dose within a precision of a few hundred
nanometers allows efficient control of the nucleation and
growth of AgNCs, which enables a systematic study of growth
kinetics and changes in the NC properties during its formation.
Laser-written AgNCs have been realized in a solid-state
substrate, namely, glass, zeolites, and polymers, by a few
groups, as described in the next section.33,37,38,42,85,90,136,137

4. DLW of AgNCs in Glass

Glass is the most common stabilizing scaffold/substrate for
generating NCs using DLW.34,38,40,85 The process of
generating AgNCs using DLW in glass (AgNCs@glass) can
be divided into two steps: (i) preparation of silver-ion-laden
glass and (ii) activation of NCs by reducing silver ions.38,138

AgNCs@glass are generated (activated) by irradiation of the
silver-ion-laden glass by a focused-laser beam38,39,139 γ
irradiation,140 electric-field-assisted diffusion (EFAD) and
successive annealing,141 and thermoassisted stabilization.86

There are reports of a few silver-laden glasses such as
sodalime glass, oxyfluoroide, and phosphates glasses that can
generate AgNPs and AgNCs.142 Femtophotoluminescent
(FPL) glass is a perfect example because the AgNCs formed
inside this glass are highly emissive and exceptionally
photostable. This glass is prepared by a standard glass melting
technique, where the raw materials are (NH4)2HPO4, ZnO,
AgNO3, and Ga2O3 powder.

38 In FPL glass with composition
40P2O5-4AG2O-55ZnO-1Ga2O3 (mol %), ZnO-P2O5 forms a
network, Ag2O is the silver source for NC formation, and
Ga2O3 enhances the stability of the glass matrix. This glass is
visibly transparent and exhibits an absorption cutoff at around
280 nm due to silver-ion-associated absorption. This glass
displays an excitation band at 265 nm and an emission band at
380 nm with the dipolar transition 4d10 → 4g5s1 of the isolated
Ag+ ions. A weak emission is also observed at 520 nm, which
corresponds to Ag+−Ag+ pairs in a small amount.38,85

DLW instrument equipped with a femtosecond laser source
emitting an average laser beam of power of 5 W with 470 fs, a
10 MHz repetition rate at 1030 nm wavelength was used to
write AgNCs@glass in a pipe-shaped fluorescent 3D structure
within FPL glass.38 (Figure 3A−H). The nonlinear absorption
of light creates a submicron voxel allowing for patterning of 3D
fluorescent structures inside the glass. The irradiated sample
presents a weak absorption between 280 and 410 nm, which
corresponds to the absorption peak of photoinduced NCs.
The emission spectra obtained from the as-formed AgNCs@

glass is broadband; however, the shape and position of the
peak is dependent on both irradiance and the number of
pulses. At low irradiance, a band with a maximum at 640 nm
and a shoulder with a maximum at 500 nm are obtained. With
an increase in the irradiance, the band at 640 nm decreases
considerably and the band with a peak at 500 nm slightly
increases, while a new band with a maximum at 590 nm
appears. However, a further increase in the irradiance
drastically decreases the band with a maximum at 640 nm
compared to that of two other bands. Hence, by adjustment of
the dose, the emission can be tuned from red to yellow.38

The fluorescence intensity of AgNCs@glass is also strongly
influenced by the laser repetition rates, irradiation, and number
of pulses. A high repetition rate of the writing beam is directly
proportional to the fluorescent intensity and results in thermal

Figure 3. continued

Copyright 2009 Optical Society of America. (F) 3D pattern created inside the glass by DLW. (G) Extinction spectrum of AgNCs@glass.
Reproduced from ref 145. Copyright 2014 John Wiley and Sons. (H) Normalized fluorescence spectra of laser-written NCs with a laser wavelength
of 1030 nm, an irradiance of 10 TW·cm−2, and 107 pulses at a repetition rate of 10 MHz. Reproduced from ref 38. Copyright 2010 American
Chemical Society. (I) Confocal fluorescence images (excitation wavelength = 405 nm) of three French Nobel Laureates in physics [Gabriel
Lippmann (1908), Alfred Kastler (1966), and Claude Cohen-Tannoudji (1997)] patterned on top of each other using DLW of AgNCs@glass.
Reproduced from ref 39. Copyright 2010 John Wiley and Sons. (J) Ring resonator and Mach−Zehnder interferometer written in silver-containing
glass ribbon fibers. Reproduced from ref 146. Copyright 2015 John Wiley and Sons. (K) Beamsplitter (50−50) fabricated inside the silver-
containing glass. Reproduced from ref 136. Copyright 201 Springer Nature.
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diffusion, causing silver atoms and ions to diffuse and aggregate
into AgNCs. The combined effect of thermal diffusion,
photodiffusion, and photodissociation leads to localization
and stabilization of NCs in the border of the irradiation zones
(Figure 3C−F). Further, both irradiance and the number of
pulses affect the fluorescence, the former linearly and the latter
logarithmically.38

AgNCs@glass exhibits nonlinear-optical properties such as
second and third harmonic generation. The fluorescence and
second-harmonic-generation correlative microscopy study
demonstrates that during laser writing inside the silver-doped
glass substrates, a laser-induced frozen charge gradient results
in a permanent and stable electric field buried inside the
modified glass. This gives rise to a second-order nonlinearity
by the well-known electric-field-induced second-harmonic-
generation effect.94,126,143,144 Further, AgNCs formed by direct
laser irradiation in silver-containing zinc phosphate glass
exhibit a third-harmonic-generation signal due to the change
in the third-order susceptibility, and this signal is used for data
storage.34

Mechanisms of AgNCs@glass Formation. Upon laser
exposure, a nonlinear four-photon interaction ejects free
electrons from the valence band to the conduction band of
the glass (Figures 3A and 4A,B).38,85,93 The released electron
reduces silver ions and forms zerovalent silver (Ag0), which

aggregates with the silver ion to form Ag2
+, and this is followed

by a chain reaction to produce Agm
x+, which is an emissive

silver species.38,145 Furthermore, the high laser repetition rate
accumulates thermal energy and increases the local temper-
ature, which causes diffusion of the silver species (Figure
4A,B).40,85,147 Mobile Ag0 atoms are trapped by the Ag+ ions to
form silver clusters Agm

x+ (m < 10 is the number of atoms and
x is the ionization degree). Subsequent exposure interacts with
newly created AgNCs and leads to photodissociation in the
center of the laser beam. This results in the formation of a ring-
shaped structure at the periphery (Figure 4B).38,40,85,147 The
creation of emissive silver species upon laser irradiation enables
writing of a 3D structure within the glass substrates (Figures
3E,F and 4).39 The laser writing produces a pipelike structure
along the propagation constant axis with a wall thickness of 80
nm.38,85

Additionally, several efforts have been made to further
understand the mechanism, the distribution of silver species,
and the glass network structure in a silver-laden glass
matrix.93,143,147−149 For instance, in one study, Bourhis et al.
investigated the excitation mechanism in AgNC@glass
formation using a transient absorption pump−probe experi-
ment and found that the four-photon-absorption mechanism
was involved for the photoexcitation process.93 A correlative
study that included near-field scanning optical microscopy,

Figure 4. Formation mechanism of AgNCs@glass. (A) Diagram depicting the physical phenomena occurring during laser-induced AgNCs@glass
formation. Reproduced from ref 147. Copyright 2016 American Physical Society. (B) Diagram portraying the processes of formation of NCs, NPs,
and nanocrystallites. After formation of the nucleation center due to photoionization, NCs grow to form NPs and nanocrystallites with an increase
in thermal treatment. Ta and Tg are the activation and glass transition temperatures, respectively. MPI is multiphoton ionization. Reproduced from
ref 40. Copyright 2009 Optical Society of America.
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Figure 5. Laser-based formation and patterning of AgNCs@zeolites. (A) True-color fluorescence image taken of the green emission from AgNCs@
zeolites and inset showing the SEM image of a characteristic silver-exchanged zeolite A crystal. Reproduced from ref 137. Copyright 2008 John
Wiley and Sons. (B) Emission spectrum before (small dashed line) and after (solid dashed line) photoactivation of an individual silver-laden zeolite
crystal. The normalized spectrum before activation is amplified 13 times (big dashed line). The inset shows emission maxima before and after
photoactivation for 11 individual crystals. Reproduced from ref 137. Copyright 2008 John Wiley and Sons. (C) Time evolution of the emission
intensity of 11 different individual silver-containing zeolite crystals excited with four different activation intensities. Reproduced from ref 137.
Copyright 2008 John Wiley and Sons. (D) Schematic showing the photoactivation process of AgNCs@zeolites. From left to right: HRSEM image
of a zeolite crystal, multiple cage structure of zeolite crystals, and single-crystal structure of zeolites with embedded silver ions, followed by the light-

ACS Applied Nano Materials www.acsanm.org Review

https://dx.doi.org/10.1021/acsanm.0c01339
ACS Appl. Nano Mater. 2020, 3, 7325−7342

7333

https://pubs.acs.org/doi/10.1021/acsanm.0c01339?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c01339?fig=fig5&ref=pdf
www.acsanm.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.0c01339?ref=pdf


chemical microprobe analysis, numerical modeling, and spatial
profiling after soft etching has been reported, and this study
elucidated the laser-induced silver redistributions (ions,
clusters, and hole centers) in a silver-containing phosphate
glass.149 Another correlative study that included fluorescence
and second-harmonic-generation microscopy revealed that the
generated electric field due to distribution of the NCs was a
key factor for silver clustering and the formation and
stabilization of AgNCs@glass required favorable reduction−
oxidation conditions.143 However, all of these studies are not
able to fully elucidate the mechanisms behind NC formation,
their enhanced properties, and the effect of the stabilization
matrix on the NC properties.
Applications of AgNCs@glass. DLW of AgNCs@glass

has already been utilized for many applications. One of them is
the long-term high-capacity optical recording medium lasting
for centuries; otherwise, the recording medium available today
suffers from a limited lifetime (∼5−10 years).39 As a proof-of-
concept of long-term 3D data storage, 100 × 100 pixel images
of three French Nobel Laureates were encoded and patterned
over one another inside a silver-containing glass substrate
(Figure 3I). These structures can withstand annealed processes
from 100 to 350 °C for 3 h compared to the current standard
for data storage of 80 °C.39 Laser-written AgNCs@glass have
also been used for the fabrication of super-resolved
nanostructures, optical grating, optical switching, micro-
polarizer, filter, ring resonator, and interferometer (Figure
3J), display, optical recording/erasing, waveguide, volume
holography, frequency converter, and photowritable glass fibers
(Figure 3K).40,41,136,146,150,151 The fabricated structures are
highly stable and show outstanding tolerance against temper-
ature, aging, and humidity.38,39,85,152 Structures show superior
photostability because they do not loose fluorescence even
after continuous irradiation of blue light (intensity 100 kW/
cm2) for hours.

5. DLW of AgNCs in Zeolites

Zeolites, also called molecular sieves, are crystalline solid
structures made of silicon, aluminum, and oxygen, forming of a
framework of pores and channels. Small molecules, water, and
cations such as Ag+, Na+, K+, Ca2+, and Mg2+ can reside within
these pores. Zeolites have been used as encapsulating scaffolds
for forming AgNCs. In the formation process, silver ions are
reduced by a chemical reductant (hydrogen gas or sodium
borohydride) or by γ and visible-light irradiation, whereas the
zeolite cages prevent their aggregation into larger
NPs.37,43,107,153,154

Emissive AgNCs are formed within the framework of the
zeolite due to a photoreduction process using a UV laser
(Figure 5A).107 The laser-generated AgNCs in zeolites
(AgNCs@zeolites) emit fluorescence of wavelength ranging
from 400 to 800 nm with a maximum at 540 ± 40 nm when
excited with 375 nm (Figure 5B,C). Further, zeolite crystals

treated thermally are 10 times more fluorescent compared to
untreated crystals. Enhanced emission occurs for the following
two reasons. The first is the formation of charge-transfer
complexes between partially dehydrated silver ions and oxygen
atoms in zeolites. The second is the self-reduced NCs upon
heat treatment.107 The AgNCs@zeolites do not blink, unlike
quantum dots, which are limited in many applications due to
photoluminescence intermittency.107

NC activation using a focused-laser beam resulted in
diffraction-limited bright spots at specific domains inside an
individual crystal (Figure 5D−G).42 Both single- and two-
photon laser writing are reported to generate AgNCs@zeolites
and thereby can write fluorescent structures. The resolution of
writing is diffraction-limited, where the lateral resolution for
single-photon writing with a laser beam of 390 nm focused
with an objective lens (oil immersion, NA = 1.3) is 600 nm
and the axial resolution is 4.3 μm. For two-photon DLW
performed with a laser beam of wavelength 790 nm focused
with the same objective lens, the lateral resolution is estimated
to be 249 nm and the axial resolution is around 1 μm. In effect,
the laser spot was scanned in three dimensions to write
different structures such as heraldic lion and Quick Response
(QR) codes, etc., as shown in Figure 5E−G.42

Mechanism of AgNCs@zeolites Using Laser Reduc-
tion. Silver ions are reduced by light, and the reduced silver
particles coalesce to increase the nuclearity; however, the
molecular dimension of the zeolite cage confines the growth
and prevents aggregation into larger NPs. The dynamics of the
activation process of AgNCs@zeolites is studied by continu-
ously recording emission spectra during NC formation (Figure
5C).137 A plot of the emission intensity as a function of time
shows a lag time of a few hundred seconds before actual
activation by UV light. This suggests that AgNCs@zeolites
need to acquire a minimal nuclearity for high fluorescence.
After continuous irradiation, the emission intensity reaches a
maximum, signifying the formation of AgNCs@zeolites, and
shows plateau behavior, suggesting the creation and
destruction of the NCs. However, prolonged exposure results
in the formation of larger nonfluorescent AgNPs. There is
heterogeneity in the activation curve, which is due to
heterogeneity inside a zeolite crystal or between individual
crystals in a population. Luminescence time decay, studied
using single-photon-counting experiments, revealed that
AgNCs@zeolites show three different decay times of
approximately 100 ps, 1 ns, and 4 ns, which are attributed to
different nuclearities of the emissive AgNCs.107,154

Applications of Laser-Written AgNCs@zeolites. The
photoactivated AgNCs@zeolites are reported for several
applications such as data storage and fluorescent light
source.8,32,42 Two-photon DLW allows for the fabrication of
a AgNCs@zeolites microstructure within different z planes of
the zeolite crystal (Figure 5G).42 Shown in the figure (only
side view) are two different QR codes (similar to the QR code

Figure 5. continued

induced activation of AgNCs@zeolites. (E) Fluorescence microscopy image of a heraldic lion fabricated using two-photon DLW inside a silver-
laden zeolite single crystal. Reproduced from ref 42. Copyright 2010 John Wiley and Sons. (F) Fluorescence image of the QR code encoded with
“Katholieke Universiteit Leuven” by two-photon DLW. Reproduced from ref 42. Copyright 2010 John Wiley and Sons. (G) Fluorescence image
showing the writing of different 2D QR codes on top of each other. Reproduced from ref 42. Copyright 2010 John Wiley and Sons. (H) AgNCs@
zeolite-based LED light source. From left to right: Composite LED [10 wt % (LTA-type zeolites + AgNCs) + poly(vinyl carbazole)], ECL spectra
at different voltages, and current−voltage curve. Here Na is sodium, ITO is indium−tin oxide, and Yb is ytterbium. Reproduced from ref 32.
Copyright 2017 John Wiley and Sons.
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shown at Figure 5F) encoded with “KULeuven” and “LPS”
written on top of one another within a distance of 4 μm. These
two structures can be easily read without any crosstalk between
the layers, and the photostability of the formed AgNCs@
zeolite patterns is remarkably high compared with that of
fluorescent organic dye.42 Because of their high fluorescence
and excellent photostability, the AgNCs@zeolites can be used
as a fluorescent light source.8,42 On that note, Kennes et al.
demonstrated the fabrication of an organic LED using the
electroluminescence properties of AgNCs@zeolites (Figure
5H).32 These highly fluorescent NCs as a light source are
excellently stable against oxygen and humidity and exhibit a
tunable wavelength; otherwise, a lot of commonly used
emitters are susceptible to oxidation and humidity.32

6. DLW of AgNCs in Polymers

Two polymers, namely, poly(methacrylic acid) (PMAA) and
poly(vinyl alcohol) (PVA), have been used as scaffolds in
generating AgNCs in polymer (AgNCs@polymer) using
DLW.90−92 PMAA is a hydrophilic polymer and is extensively
used as a stabilizing scaffold for encapsulating brightly
fluorescent AgNCs in solutions.155 PMAA is reliably used as
a capping agent for generating AgNCs under different
reduction processes such as photoreduction, microwave
reduction, and sonochemical reduction. This polymer consists
of a carboxylic acid functional group, which has a strong
affinity for silver ions and silver surfaces.17,24,104 PMAA can
also act as a OH radical scavenger that prevents the oxidation
of small AgNCs.24 PVA, a widely used polymer recognized as
an embedding material for AgNPs, has also been demonstrated
to stabilize AgNCs.92

Both multiphoton- and single-photon-absorption DLW is
reported to 2D pattern photostable fluorescent user-defined
structures comprised of fluorescent AgNCs@polymer in
PMAA polymer thin films (Figure 6A,B).33,90 For example, a
photostable microscale fluorescent QR code is fabricated using
single-photon DLW, which can be used in microlabeling
applications such as authenticity marking and fluorescent
tagging (Figure 6B). This structure is fabricated using very low
intensity laser light of 45 GW m−2, which corresponds to a
laser power of 0.75 mW, and even a low-power laser pointer
can deliver this amount of power.
The AgNCs@polymer structures emit fluorescence when

excited with wavelengths ranging from 420 to 520 nm, and the
maximum fluorescence is observed for 470 nm excitation.
These structures exhibit broadband emission ranging from 500
to 750 nm with a maximum at 560 nm (Figure 6C).33 The
position and shape of the emission spectrum are characteristic
of AgNCs and are similar in character to those observed in
solution.17,33 Further, AgNCs@polymer also exhibits a SERS
signal (peak at 510 nm) suggested to be generated by the
charge-transfer mechanism between the polymer and NCs
(Figure 6D,E).33 The Raman spectroscopy study revealed the
absence of Raman peaks in the spectrum of the area not
exposed to the laser beam, whereas Raman signals are observed
in the spectrum from the written structures [1590 cm−1,
νCO2

−(asym); 1335 cm−1, νCO2
−(sym)].33 The presence of

CO2
− functional groups indicates that they are responsible for

stabilization of the AgNCs. It is also reported that the
photostability of AgNCs@polymer is superior to a well-known
organic dye, Rhodamine 6G (Figure 6F). The high
fluorescence with photostability shows that AgNCs@polymer
can be an ideal replacement for organic dyes, which are often

Figure 6. (A) Multiphoton DLW of AgNCs in PMAA polymer. Reproduced from ref 33. Copyright 2014 American Chemical Society. (B)
Fluorescence microscopy image of a microlabel (QR code) comprised of AgNCs@polymer patterned using single-photon DLW. Reproduced from
ref 90. Copyright 2016 Springer Nature. (C) Emission and excitation spectra obtained from AgNCs@polymer. The inset shows the arrays of a
laser-written line comprised of AgNCs@polymer. Reproduced from ref 33. Copyright 2014 American Chemical Society. (D) Raman spectra
detected from the written structures (black curve) and unexposed regions (red curve). Reproduced from ref 33. Copyright 2014 American
Chemical Society. (E) Raman microscopy image of the laser-written microlines with AgNCs@polymer. (F) Comparison of the photostability of as-
formed NCs with a well-known organic dye Rhodamine 6G dye and a silver-ion-containing PMAA film (not exposed to light). Reproduced from ref
33. Copyright 2014 American Chemical Society.
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limited by photobleaching. It is also shown that the fluorescent
structures are stable and brightly fluorescent upon storage in
ambient room lighting for the investigated period of 6 weeks.90

Next, a single-exposure, submicron-scale, and arbitrary
patterning of fluorescent AgNCs@polymer microstructures in
a PMAA matrix is also reported.91 The technique is based on a
patterning of the laser beam using a spatial light modulator
(SLM). In this report, a precalculated phase pattern is encoded
into the SLM that patterns the impinging laser beam, which
reduces the silver ion to NCs with submicroscale spatial
control. This technique precludes the use of the scanning stage,
meaning a reduction in cost and a significant decrease in the
fabrication time. To demonstrate the applicability of the
technique, a similar photostable fluorescent microlabel like the
one shown in Figure 6B is fabricated.91

PVA can also act as an encapsulating agent for the formation
of AgNCs@polymer.92 AgNCs@polymers in PVA thin films
are also found to be photostable, and they are fluorescent in
the visible wavelengths. The photoluminescence property and
stability of AgNCs@polymer are similar to those of laser-
written AgNCs in PMAA. It is claimed in the article that PVA
is an inexpensive, widely used industrial polymer with excellent
features such as biocompatibility, biodegradability, and non-
toxic; the technique of fabrication in this polymer thin film is
cost-effective and has the potential to find numerous biology-
related applications.92

AgNCs@polymers have also been synthesized by laser
interference lithography using a film of PMAA and silver
ions.156 The laser interference lithography allows a large-area
patterning of the NCs at single exposure unlike DLW, which is
a point-by-point scanning method of patterning. The as-
formed AgNCs@polymer exhibits broadband fluorescence
centered at 600 nm when excited at 488 nm. These NCs
also possess a sharp peak at 510 nm, which is also suggested as
an enhanced Raman scattering effect.156

Formation Mechanism of Laser-Written NCs in a
Polymer Thin Film. Irradiation of the laser beam to the spin-
coated PMAA/silver ion film forms AgNCs.33,90 A 532 nm

laser beam with an intensity of 150 MW/m2 is continuously
irradiated to generate AgNCs in PMAA, and a series of
emission spectra and intensities are recorded to study the
formation mechanism of AgNCs (Figure 7).90 On the basis of
the analysis of these recorded spectra, the formation of AgNCs
using DLW in the polymer is divided into three stages (Figure
7A−D). In the first stage, a quick photobleaching of a small
fluorescence signal is reported, possibly a result of AgNCs
kinetically trapped in PMAA yet not completely protected by
the methacrylate units. This is followed by a second stage
where a sharp rise in the fluorescent intensity indicating the
formation of photostable NCs well protected by methacrylate
units is reported. In this stage, silver ions get reduced to
AgNCs, which are immediately coated by PMAA. The
encapsulation process does not allow further growth of
AgNCs to the formation of larger NPs, thereby stabilizing as-
formed AgNCs. The third stage is marked by a slow
exponential photobleaching of the fluorescence as AgNCs
grow larger into nonfluorescent NPs.90 However, these results
are mostly suggestive, and more studies are needed to fully
elucidate the detailed formation mechanism and enhanced
properties of as-formed NCs.

Application of Laser-Written NCs in Polymers. Laser
patterning of NCs in a polymer film has been shown to
fabricate fluorescent microlabels that have the potential for
applications like authenticity marking and fluorescence
tagging.90 This technique of NC formation is anticipated for
many other applications such as imaging, superresolution
imaging, cell labeling, sensing, and fluorescent tagging.33,90

However, to realize these applications, one needs to extract
NCs from the ∼40 nm polymer film without losing their
special properties, which is technically challenging. Addition-
ally, the as-formed NCs are reported to exhibit enhanced
Raman signatures, and they can possibly be used as a SERS
substrate.33 Also, laser interference lithography is also reported
to generate NCs in a polymer substrate, and this technique of
fabrication is anticipated for the development of a biocompat-
ible material with antifouling properties and enhanced surface

Figure 7. Formation of AgNCs in silver-containing polymer (PMAA) thin films. (A) Cartoon showing the laser-based formation of (1) silver ions,
(2) AgNC or NCs, and (3) AgNPs or NPs by controlling the laser dose. (B) Fluorescence image, (C) fluorescence intensity, and (D) emission
spectra for points 1−3. Reproduced from ref 90. Copyright 2016 Springer Nature.
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area for decreasing bacterial attachment in prosthesis and
medical supplies.156

Reports of Patterning of NCs of Other Metals and
Encapsulating Agents. Although this review mostly focused
on DLW of AgNCs, we believe the DLW method of NC
formation is generic and can be used to synthesize and pattern
NCs of other metallic elements. On the same note, one article
presented a fast CO2 laser patterning of spherical sub-10-nm
metal NPs using laser photothermal synthesis and writing. The
method was demonstrated to fabricate sub-10-nm NPs of
nickel, copper, and silver directly in polymer thin films.157

Another recent article reported a submicrometer writing of
fluorescent gold NCs encapsulated in a PVA film with a low-
power CW laser.158 In one interesting study, patterning of
AgNCs in an eggshell membrane using UV-lamp irradiation is
reported. The egg membrane is double-layered with an
interwoven fibrous structure and is comprised of cysteine-
abundant proteins, which stabilize the NCs. This facile
approach has potential applications in catalysis, SERS and
chemical sensing, and fluorescent labeling.159

7. SUMMARY, CHALLENGES, AND FUTURE
OUTLOOK

Nanomaterials continue to find applications in many fields,
enabling technologies in a wide variety of areas, and their
applications are increasing very rapidly. One promising
nanomaterial that has recently gained tremendous interest is
NCs. Metallic NCs, with size of typically less than 2 nm,
represent a new class of nanomaterials that can act as a bridge
between isolated metal atoms and larger NPs. They have been
widely studied because of their unique optical properties such
as ultrahigh photostability, high and tunable emission, and
ultrasmall size. AgNCs are typically synthesized in the liquid
state using a bottom-up approach mostly by reducing silver
salts in stabilizing solutions. However, the fabrication of
functional devices that require solid monolithic substrates such
as SERS substrates, thin-film sensors, and micro/nanolabels is
very difficult with solution-based methods of NC formation.
More recently, manufacturing approaches such as ultrafast laser
writing have been used to generate solid-state AgNCs, which
exhibit strong fluorescence and photostability. Laser-written
NCs have been proposed for various applications; however,
they are mostly limited to laboratory research. Current studies
are not adequate to understand the exact mechanism of
formation and growth, geometries, and gifted properties of
these NCs. An enhanced understanding of the laser-written
NCs properties will advance their utilization.
NCs and NCs-based functional structures can be created

using single-photon-absorption- and TPA-induced DLW
techniques, which involve a tightly focused laser beam scanned
in a photosensitive material such as polymer, glass, etc., to
fabricate microstructures with subwavelength-size features.
DLW is shown to form and pattern fluorescent silver NC
microstructures in different inorganic/organic matrixes such as
FPL glass, zeolite crystals, and polymers. In this context,
researchers have used a femtosecond near-IR laser to fabricate
highly fluorescent AgNC microstructures using four-photon-
absorption phenomena in the inorganic FPL glasses, which
provide an excellent matrix for NCs stabilization. The
formation of highly fluorescent AgNCs@glass requires a high
laser intensity of more than 4.8 TW/cm2 and a laser repetition
rate of more than 10 MHz; however, the laser-written emissive

species are highly stable and claimed to store data for many
centuries.
A laser beam is also used to reduce silver ions to form

brightly fluorescent AgNCs@zeolites. Zeolites are crystalline,
highly porous materials with cage systems that offer localized
stabilization of these NCs. During the activation by using heat
treatment and TPA, silver ions reduce to form NCs that are
confined in the cages of zeolites. AgNCs@zeolites are shown
to be used as microlabels and a novel LED-based light source.
Further, DLW has also been used to form and pattern

AgNCs@polymer. The synthesis of fluorescent AgNCs@
polymer (in PMAA and PVA thin films) is reported using
near-IR femtosecond ultrashort pulsed and CW lasers.
AgNCs@polymer exhibits high fluorescence emission and
photostability, although the underlying mechanism of for-
mation and the reason for the enhanced properties of these
NCs are not clearly known.
Each of these DLW techniques in different scaffolds has its

own pros and cons. AgNCs@polymer and AgNCs@zeolites
can have widespread use because of their ease in sample
preparation techniques compared to that of AgNCs@glass.
Further, laser reduction of silver in these scaffolds can be
performed with a low-power CW laser. However, AgNCs@
glass requires tedious sample preparation steps and usually a
high-intensity laser, which are limited to a few research groups.
From a scaffold point of view, the glass matrix provides better
encapsulation compared to the zeolites and polymer scaffolds
because AgNCs formed inside FPL glass are highly stable
against temperature and humidity. Further, they are extremely
photostable because these NCs do not photobleach. AgNCs@
polymer and AgNCs@zeolites are also remarkably photostable
compared to most organic dyes; however, they cannot match
the photostability of AgNCs@glass.
It is difficult to print freeform user-defined structures using

glass and zeolite substrates, although 3D patterning of NCs has
been shown inside these substrates. NC formation in a
polymer is even limited to 2D patterning because the thickness
of the polymer film is a few tens of nanometers. However, in
future, polymers can be potentially functionalized with proper
functional groups to print 3D freeform structures because they
offer greater design flexibility compared to the glass and zeolite
scaffolds. From the application perspective, laser-induced
AgNC formation in glass is extensively studied and has been
reported for different applications such as recording/reading
data, optical devices, volume holography, frequency converter,
and glass fibers, whereas laser-written AgNCs@zeolites have
been used for QR codes, a fluorescent light source, an organic
LED, and data storage. AgNCs@polymer is reported mostly
for microlabeling.
Although the first work on this topic was reported almost a

decade ago, several current challenges in the field suggest that
DLW of NCs is still in its infancy. At present, DLW of the NCs
is mostly limited to silver metal; however, there are plenty of
metals such as gold, copper, platinum, etc., that can replace
silver. Consideration of the new metallic cluster will lead to the
formation of NCs with new properties, functionalities, and
applications. The printing of NCs is mostly limited to the
fabrication of 2D or planar structures. Although 3D patterning
has been shown in glass and zeolites, the fabrication of a
freeform 3D NC structure is still a challenge. As mentioned
earlier, polymers such as PMAA, if functionalized with the
proper functional group that can undergo photo-cross-linking,
could be a key for freeform 3D printing. In most cases, DLW of
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NCs requires the use of a femtosecond laser, which is
expensive and can limit the use of NCs in general. Hence,
attention should be given to studies that highlight the use of a
low-cost CW laser for generating NCs for its widespread use.
Characterization of these ultrasmall NCs is difficult and is

mostly limited to optical spectroscopic tools such as absorption
and emission spectroscopy. High-resolution imaging techni-
ques such as transmission electron microscopy (TEM) would
provide information about the shape, geometry, and
distribution of the atoms within the NC constructs. However,
TEM studies are extremely difficult because they require
samples with thicknesses of less than 100 nm. One of the
possible ways of performing the TEM study is to generate NCs
within s TEM grid. This is most feasible with the polymer
substrate, although irradiation of the beam of electrons during
the TEM imaging process could perturb the ultrasmall AgNCs,
leading to changes in their morphology and properties. In
understanding light and material interactions, a better study of
the shape and size of NCs and encapsulating agents will help to
understand the enhanced properties of laser-written NCs and
will further allow us to generate NCs with the desired
properties. A comprehensive experimental study combined
with theoretical (modeling and simulation) studies is desirable
to understand the structure−property application of laser-
written NCs.
Further, metal NCs formed in solutions are, in general,

biocompatible. There are several reports that these NCs are
synthesized in hydrogels, a biomimetic material, and has been
used for the imaging of live cells. However, authors are not
aware of the laser-written NCs used for any bioscience-related
applications. A detailed biological study is needed to enable the
use of NC substrates for cell growth, proliferation, migration,
and differentiation and associated drug screening applications.
Special focus should be placed on the extraction of these

laser-written AgNCs without any loss of their unique
properties. The extraction will lead to many applications
such as fluorophores for microscopy, which is one of the most
anticipated applications of NCs because of its photostability
and high quantum yield emission. Utilization of AgNCs in
superresolution microscopy such as stimulated emission
depletion (STED) microscopy will also be transformative. In
STED microscopy, the resolution is directly proportional to
the photostability of the fluorophore. Hence, the use of
photostable laser-written NCs (especially in glass) could
enhance the resolution of fluorescence microscopy, that has
never been achieved before. Further, it is expected in the future
that laser-written NCs enable the creation of next-generation
systems such as substrates for SERS, anticounterfeiting codes,
novel light-emitting nanodevices, intracellular drug delivery
systems, molecular diagnostic devices, etc.
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